Thermodynamics and Statistical Physics

Part 1– Thermodynamics

Intermediate Exam 3

Tuesday, October 31 2017, 9:00-12:00, Aletta Jacobshal 01

The total number of points that can be reached in this exam is 90.

Final grade = (points/10) + 1.

- 1) Short questions (30 pt)
- a) Describe the second law of thermodynamics in your own words. (2 pt)
- b) Describe the third law of thermodynamics in your own words. (2 pt)
- c) Explain the concept of *reversible changes/processes* in thermodynamics. Why are reversible processes conceptually important? (**3 pt**)
- d) Derive the Maxwell relation $\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial p}{\partial T}\right)_V$. (3 pt)
- e) Consider a heat engine working between two reservoirs with temperatures $T_1 = 1200$ K and $T_2 = 300$ K. Show that the maximum work the machine can deliver per 2 kJ of heat extracted from reservoir 1, amounts to 1.5 kJ. (**3 pt**)
- f) A photon of visible light with energy 2 eV is absorbed by a macroscopic body held at 300 K.
 By what factor does the number of microstates of the body change? What is the change for a 800 MHz photon used in mobile phones (photon energy is about 3.3 x 10⁻⁶ eV)? (3 pt)
- g) The number of ideal gas molecules per unit volume having speeds between v and v + dvand traveling at angles between θ and $\theta + d\theta$ is given by $nf(v)dv\frac{1}{2}sin\theta d\theta$ with f(v) being the Maxwell Boltzmann distribution. Show that the number of these particles that hit a unit area of wall per unit time is proportional to vf(v). What does this tell you about the mean kinetic energy of ideal gas particles effusing out of a large vessel through a small hole? (5 pt)
- h) Describe the concept of thermal conductivity within the kinetic theory of gases (use a sketch). What is the role of the mean free path? (**4 pt**)
- i) An ideal mono-atomic gas has initial volume V_i = 1 l, temperature T_i = 373 K and pressure p_i = 6.258 10⁴ Pa. The gas is reversibly cooled and compressed to T_f = 298 K and V_i = 0.5 l. What is the entropy change of the surroundings? (5 pt)

2) Two compartments (30 pt)

Consider an ideal gas in a container. The container is separated into two compartments A and B, separated by a wall that moves without friction. Also, the wall thermally isolates

compartments A and B from each other. Compartment B is in contact with an infinite heat bath and stays at constant temperature T_B. The starting conditions are $T_A = T_B = 300$ K, $V_A = V_B = 2$ I and $n_A = n_B = 2$ mol. Now compartment A is heated and the frictionless wall moves reversibly, until V_B is reduced to 1 I. The molar heat capacity at constant volume is $C_{V,m} = 20$ JK⁻¹mol⁻¹.

- a) Show that the work done by the gas in compartment A is $\Delta W_A = -3.458$ kJ. (8 pt)
- b) Determine the change in internal energy ΔU_B of the ideal gas in compartment B. (6 pt)
- c) Calculate the amount of heat that went into compartment B during the process. (4 pt)
- d) Determine the change in internal energy ΔU_A of the ideal gas in compartment A (8 pt)
- e) Calculate the heat that went into compartment A. (4 pt)

3) A thermodynamic cycle (30 pt)

Consider one mol of ideal gas (the system) in a state A with volume V_A , pressure p_A and temperature $T_A = 300$ K. Consider the following thermodynamic cycle:

$A \rightarrow B \rightarrow C \rightarrow A$

Step 1: reversible adiabatic expansion from A to B.

Step 2: reversible compression at constant volume from B to C.

Step 3: reversible compression at constant pressure from C to A.

In state B, the gas has a pressure p_B and a volume $2V_A$. In state C, the gas has a pressure

 p_A and a volume $2V_A$. The heat capacities are given by $C_{p,m} = \frac{7}{2}R$ and $C_{p,m} - C_{V,m} = R$.

a) Sketch this thermodynamic cycle in a p - V diagram. Indicate in which steps heat flows and in which direction (into the system and out of the system). (5 pt)

b) For the reversible adiabatic expansion/compression of an ideal gas, show that $T_f =$

$$T_i \left(\frac{V_i}{V_f}\right)^{\gamma-1}$$
 with $\gamma = 1 + \frac{R}{C_{V,m}}$ and determine T_B and p_B . (5 pt)

c) Determine T_C . (5 pt)

d) Determine ΔQ and ΔW for each of the three steps. Hint: For step 3 (constant pressure), it is handy to calculate the enthalpy change of an ideal gas. (**10 pt**)

e) To let this thermodynamic cycle do work, do we have to run it in the direction $A \rightarrow B \rightarrow$

 $C \rightarrow A$ or do we have to reverse the process? Give a motivation! (5 pt)

Physical constants:

Avogadro's number:	$N_0 = 6.02 \text{ x } 10^{23} \text{ mol}^{-1}$
Planck's constant:	$h = 6.626 \ge 10^{-34} \text{ Js}$
	$\hbar = \frac{h}{2\pi} = 1.055 \text{ x } 10^{-34} \text{ Js}$
Boltzmann's constant:	$k = 1.381 \ge 10^{-23} \text{ J K}^{-1}$
Gas constant:	$R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$
Speed of light:	$c = 3 \ge 10^8 \text{ m s}^{-1}$
Electron rest mass:	$m_e = 9.11 \ge 10^{-31} \text{ kg}$
Proton rest mass:	$m_p = 1.67 \ge 10^{-27} \text{ kg}$
Charge of the electron:	$e = 1.60 \ge 10^{-19} \text{ C}$
Bohr magneton:	$\mu_B = \frac{e\hbar}{2m_e} = 9.27 \text{ x } 10^{-24} \text{ A m}^2$
Permeability of vacuum:	$\mu_0 = 4\pi \ge 10^{-7} \text{ N A}^{-2}$
Molar volume at STP:	22.4 litre

Formula Sheet:

Mean of a probability distribution: $\langle x \rangle = \int x P(x) dx$

Boltzmann distribution: $P \propto e^{-E/(k_B T)}$

Ideal gas properties (note these are NOT universal relationships – always check if the required assumptions are valid for a given problem!):

Maxwell Boltzmann distribution: $f(v)dv = \frac{4}{\sqrt{\pi}} \left(\frac{m}{2k_BT}\right)^{3/2} v^2 dv \ e^{-mv^2/(2k_BT)}, \langle v \rangle = \sqrt{\frac{8k_BT}{\pi m}}, \langle v^2 \rangle = \frac{3k_BT}{m}$	
Molecular flux per area per second:	$\Phi = \frac{1}{4}n\langle v \rangle$
Mean free path:	$\lambda pprox rac{1}{\sqrt{2}n\sigma}$
Viscosity: $\eta = \frac{1}{3} nm \lambda \langle v \rangle$ and momentum flux: $\Pi_z = -\eta \frac{\partial \langle u_x \rangle}{\partial z}$	
Thermal conductivity: $\kappa = \frac{1}{3} C_V \lambda \langle v \rangle$	and heat flux: $J_z = -\kappa \frac{\partial T}{\partial z}$
Diffusion coefficient: $D = \frac{1}{3}\lambda \langle v \rangle$	and heat flux: $\Phi_z = -D \frac{\partial n^*}{\partial z}$
Thermal diffusion equation:	$\frac{\partial T}{\partial t} = D \nabla^2 T$ with $D = \frac{\kappa}{C}$
Heat capacity at constant volume:	$C_V = \left(\frac{\partial Q}{\partial T}\right)_V$
Heat capacity at constant pressure:	$C_p = \left(\frac{\partial Q}{\partial T}\right)_p$
For an ideal gas:	$C_p - C_V = R$
Adiabatic index:	$\gamma = \frac{c_p}{c_V}$
Efficiency of a Carnot engine:	$\eta = (T_h - T_l)/T_h$
Definition of entropy:	$dS = \frac{dQ_{rev}}{T}$
Statistical def. Boltzmann entropy:	$S = k_B ln\Omega$
Statistical def. Gibbs entropy:	$S = -k_B \sum_i P_i ln P_i$
Fundamental equation:	dU = TdS - pdV
Enthalpy:	H = U + pV
Helmholtz energy:	F = U - TS
Gibbs energy:	G = H - TS