Thermodynamics and Statistical Physics

Part 1- Thermodynamics

Intermediate Exam 3

Tuesday, October 31 2017, 9:00-12:00, Aletta Jacobshal 01
The total number of points that can be reached in this exam is 90 .
Final grade $=($ points $/ 10)+1$.

1) Short questions ($\mathbf{3 0} \mathbf{~ p t}$)

a) Describe the second law of thermodynamics in your own words. (2 pt)
b) Describe the third law of thermodynamics in your own words. (2 pt)
c) Explain the concept of reversible changes/processes in thermodynamics. Why are reversible processes conceptually important? ($\mathbf{3} \mathbf{~ p t}$)
d) Derive the Maxwell relation $\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial p}{\partial T}\right)_{V}$. (3 pt)
e) Consider a heat engine working between two reservoirs with temperatures $T_{1}=1200 \mathrm{~K}$ and $T_{2}=300 \mathrm{~K}$. Show that the maximum work the machine can deliver per 2 kJ of heat extracted from reservoir 1, amounts to 1.5 kJ . (3 pt)
f) A photon of visible light with energy 2 eV is absorbed by a macroscopic body held at 300 K . By what factor does the number of microstates of the body change? What is the change for a 800 MHz photon used in mobile phones (photon energy is about $3.3 \times 10^{-6} \mathrm{eV}$)? ($\mathbf{3} \mathbf{~ p t}$)
g) The number of ideal gas molecules per unit volume having speeds between v and $v+d v$ and traveling at angles between θ and $\theta+d \theta$ is given by $n f(v) d v \frac{1}{2} \sin \theta d \theta$ with $f(v)$ being the Maxwell Boltzmann distribution. Show that the number of these particles that hit a unit area of wall per unit time is proportional to $v f(v)$. What does this tell you about the mean kinetic energy of ideal gas particles effusing out of a large vessel through a small hole? (5 pt)
h) Describe the concept of thermal conductivity within the kinetic theory of gases (use a sketch). What is the role of the mean free path? (4 pt)
i) An ideal mono-atomic gas has initial volume $V_{i}=1 \mathrm{I}$, temperature $T_{i}=373 \mathrm{~K}$ and pressure $p_{i}=$ $6.25810^{4} \mathrm{~Pa}$. The gas is reversibly cooled and compressed to $T_{f}=298 \mathrm{~K}$ and $V_{i}=0.5 \mathrm{I}$. What is the entropy change of the surroundings? (5 pt)

2) Two compartments ($\mathbf{3 0} \mathbf{~ p t}$)

Consider an ideal gas in a container. The container is separated into two compartments A and B, separated by a wall that moves without friction. Also, the wall thermally isolates
compartments A and B from each other. Compartment B is in contact with an infinite heat bath and stays at constant temperature T_{B}. The starting conditions are $T_{A}=T_{B}=300 \mathrm{~K}$, $V_{A}=V_{B}=2 I$ and $n_{A}=n_{B}=2 \mathrm{~mol}$. Now compartment A is heated and the frictionless wall moves reversibly, until V_{B} is reduced to 1 I . The molar heat capacity at constant volume is $C_{V, m}=20 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.
a) Show that the work done by the gas in compartment A is $\Delta W_{A}=-3.458 \mathrm{~kJ}$. ($8 \mathbf{~ p t}$)
b) Determine the change in internal energy ΔU_{B} of the ideal gas in compartment B . ($\mathbf{6} \mathbf{~ p t}$)
c) Calculate the amount of heat that went into compartment B during the process. ($\mathbf{4} \mathbf{~ p t)}$
d) Determine the change in internal energy ΔU_{A} of the ideal gas in compartment A ($8 \mathbf{p t}$)
e) Calculate the heat that went into compartment A. (4 pt)

3) A thermodynamic cycle ($\mathbf{3 0} \mathbf{~ p t)}$

Consider one mol of ideal gas (the system) in a state A with volume V_{A}, pressure p_{A} and temperature $T_{A}=300 \mathrm{~K}$. Consider the following thermodynamic cycle:

$$
A \rightarrow B \rightarrow C \rightarrow A
$$

Step 1: reversible adiabatic expansion from A to B.
Step 2: reversible compression at constant volume from B to C.
Step 3: reversible compression at constant pressure from C to A.
In state B, the gas has a pressure p_{B} and a volume $2 V_{A}$. In state C, the gas has a pressure p_{A} and a volume $2 V_{A}$. The heat capacities are given by $C_{p, m}=\frac{7}{2} R$ and $C_{p, m}-C_{V, m}=R$.
a) Sketch this thermodynamic cycle in a $p-V$ diagram. Indicate in which steps heat flows and in which direction (into the system and out of the system). ($5 \mathbf{~ p t}$)
b) For the reversible adiabatic expansion/compression of an ideal gas, show that $T_{f}=$ $T_{i}\left(\frac{V_{i}}{V_{f}}\right)^{\gamma-1}$ with $\gamma=1+\frac{R}{C_{V, m}}$ and determine T_{B} and $p_{B} .(5 \mathrm{pt})$
c) Determine T_{C}. $\mathbf{5} \mathbf{~ p t}$)
d) Determine ΔQ and ΔW for each of the three steps. Hint: For step 3 (constant pressure), it is handy to calculate the enthalpy change of an ideal gas. (10 pt)
e) To let this thermodynamic cycle do work, do we have to run it in the direction $A \rightarrow B \rightarrow$ $C \rightarrow A$ or do we have to reverse the process? Give a motivation! ($5 \mathbf{p t}$)

Physical constants:

Avogadro's number:
$N_{0}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$
Planck's constant:
$h=6.626 \times 10^{-34} \mathrm{JS}$ $\hbar=\frac{h}{2 \pi}=1.055 \times 10^{-34} \mathrm{JS}$
Boltzmann's constant:
Gas constant:
$k=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$

Speed of light:
$R=8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

Electron rest mass:
Proton rest mass:
Charge of the electron:
$c=3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$
$m_{p}=1.67 \times 10^{-27} \mathrm{~kg}$

Bohr magneton:
$e=1.60 \times 10^{-19} \mathrm{C}$

Permeability of vacuum:
$\mu_{B}=\frac{e \hbar}{2 m_{e}}=9.27 \times 10^{-24} \mathrm{~A} \mathrm{~m}^{2}$
Molar volume at STP:
$\mu_{0}=4 \pi \times 10^{-7} \mathrm{~N} \mathrm{~A}^{-2}$
22.4 litre

Formula Sheet:

$\begin{array}{ll}\text { Mean of a probability distribution: } & \langle x\rangle=\int x P(x) d x \\ \text { Boltzmann distribution: } & P \propto e^{-E /\left(k_{B} T\right)}\end{array}$
Ideal gas properties (note these are NOT universal relationships - always check if the required assumptions are valid for a given problem!):

Maxwell Boltzmann distribution: $f(v) d v=\frac{4}{\sqrt{\pi}}\left(\frac{m}{2 k_{B} T}\right)^{3 / 2} v^{2} d v e^{-m v^{2} /\left(2 k_{B} T\right)},\langle v\rangle=\sqrt{\frac{8 k_{B} T}{\pi m}},\left\langle v^{2}\right\rangle=\frac{3 k_{B} T}{m}$
Molecular flux per area per second: $\quad \Phi=\frac{1}{4} n\langle v\rangle$
Mean free path: $\quad \lambda \approx \frac{1}{\sqrt{2} n \sigma}$
Viscosity: $\quad \eta=\frac{1}{3} n m \lambda\langle v\rangle$ and momentum flux: $\quad \Pi_{z}=-\eta \frac{\partial\left\langle u_{x}\right\rangle}{\partial z}$
Thermal conductivity: $\kappa=\frac{1}{3} C_{V} \lambda\langle v\rangle$ and heat flux: $\mathrm{J}_{z}=-\kappa \frac{\partial T}{\partial z}$
Diffusion coefficient: $\quad D=\frac{1}{3} \lambda\langle v\rangle$ and heat flux: $\Phi_{z}=-D \frac{\partial n^{*}}{\partial z}$
Thermal diffusion equation: $\quad \frac{\partial T}{\partial t}=D \nabla^{2} T$ with $D=\frac{\kappa}{C}$
Heat capacity at constant volume: $\quad C_{V}=\left(\frac{\partial Q}{\partial T}\right)_{V}$
Heat capacity at constant pressure: $\quad C_{p}=\left(\frac{\partial Q}{\partial T}\right)_{p}$
For an ideal gas: $\quad C_{p}-C_{V}=R$
Adiabatic index: $\quad \gamma=\frac{c_{p}}{c_{V}}$
Efficiency of a Carnot engine: $\quad \eta=\left(T_{h}-T_{l}\right) / T_{h}$
Definition of entropy: $\quad d S=\frac{d Q_{\text {rev }}}{T}$
Statistical def. Boltzmann entropy: $\quad S=k_{B} \ln \Omega$
Statistical def. Gibbs entropy: $\quad S=-k_{B} \sum_{i} P_{i} \ln P_{i}$
Fundamental equation: $\quad d U=T d S-p d V$
Enthalpy: $\quad H=U+p V$
Helmholtz energy: $\quad F=U-T S$
Gibbs energy:
$G=H-T S$

